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Abstract
Charge transport of a two-dimensional electron gas in the presence of a magnetic
field is studied by means of the Keldysh–Green function formalism and the tight-
binding method. We evaluate the spatial distributions of persistent (equilibrium)
and transport (nonequilibrium) currents, and give a vivid picture of their profiles.
In the quantum Hall regime, we find exact conductance quantization both for
persistent currents and for transport currents, even in the presence of impurity
scattering centres and moderate disorder.

About 20 years ago, the discovery of the integer quantum Hall effect [1] opened a
new area of research and has led to extensive investigations on the subject. The most
spectacular experimental feature and theoretical challenge is the perfect quantization of the
Hall conductance of a two-dimensional electron gas in integer multiples of 2e2/h, and its
universality regardless of the type of mesoscopic device under investigation, degree of disorder,
impurities, etc. The interpretation of transport of two-dimensional conductors in magnetic
fields has progressed rapidly [2]. In analogy with currents in a superconductor, Laughlin [3]
proposed that conductance quantization was entailed by the long-range phase rigidity of
wavefunctions. Halperin [4] pointed out the importance of current-carrying electron states
localized at opposite edges of the conducting sample. A major breakthrough in the explanation
of the quantum Hall effect has been given by Büttiker [5] in terms of the suppression of elastic
or inelastic backscattering, whenever the carriers are moving on opposite edges because of the
influence of high magnetic fields. The commonly accepted explanation of the well defined
plateaus in the quantum Hall resistance resides in the net spatial separation of edge states
supporting right- and left-moving carriers, so the probability of scattering of electrons between
states of reverse direction is vanishingly small (see also ch 4 of [6]).
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In this letter we investigate the spatial distribution of currents in a two-dimensional electron
gas threaded by a magnetic field, and provide a vivid picture of the carriers flowing on the
edges of the wire. We find that both persistent currents and transport currents exhibit exact
conductance quantization in the integer quantum Hall regime; this is true both for ideal samples
without disorder and in the presence of impurities, disorder, border irregularities, and other
defects.

Model calculations of conductance are often based on the solution of the Schrödinger
equation for a particle in a magnetic field with contributions from additional potentials [7].
The other very popular complementary approach is based on the tight-binding formalism [8],
which has been a valuable tool mainly for investigating situations where the magnetic flux
� through a plaquette is comparable with the flux quantum �0 = hc/e. The tight-binding
formalism can easily include scattering potentials, but the physics it describes for � ∼ �0

entails unrealistically strong magnetic fields applied to the sample. A novelty of the present
calculation is adopting the tight-binding framework for the description of a quantum wire
in the ‘continuum limit’, characterized by �/�0 � 1, arbitrary longitudinal extension, and
sufficiently large transverse width. In this way we achieve a flexible tool, able to describe
Landau level formation at realistic magnetic fields, and, at the same time, able to handle quite
efficiently impurity scattering processes in the sample. The study of the spatial location of the
currents is performed within the nonequilibrium Keldysh Green function formalism [9, 10];
appropriate elaborations [11] exploit the localized nature of the basis functions and provide an
extremely accurate investigation tool.

The basis mesoscopic structure under study is a planar lattice of periodicity a, dimensions
Lx = Nx a and L y = Nya, threaded by a uniform perpendicular magnetic field. The number
Nx of unit cells in the x-direction is arbitrarily large, while a number Ny of about hundred is
found more than sufficient to mimic the continuum limit of the effective-mass approximation.
When the first Landau gauge is chosen for the description of the magnetic field, the one-electron
Hamiltonian of the lattice model can be written in the form

H =
∑
m,ν

E0|φmν〉〈φmν | + t
∑
m,ν

[|φmν+1〉〈φmν | + |φmν〉〈φmν+1|]

+ t
∑
m,ν

[eiαν |φmν〉〈φm+1ν | + e−iαν |φm+1ν〉〈φmν |], (1)

where m is the site index in the x-direction and ν is the chain index in the y-direction, t < 0
is the nearest-neighbour hopping parameter, E0 is the site energy, and the uniform magnetic
field B is introduced through the Peierls phase factor α = 2π�(B)/�0 with �(B) = Ba2.
Additional terms, diagonal in the site representation, are later added to the Hamiltonian (1) to
represent the presence of impurities or effect of disorder.

The perfect wire, described by the Hamiltonian (1), is invariant for translations in the
x-direction; it is thus convenient, as in tight-binding calculations, to use as basis functions the
Bloch sums {|�νkx 〉} built with the localized orbitals belonging to the νth chain of the wire.
For any kx in the first Brillouin zone this leads to the Harper Hamiltonian [12]

H (kx) =
∑

ν

2t cos(kxa + να)|�νkx 〉〈�νkx | + t
∑

ν

[|�νkx 〉〈�ν+1kx | + |�ν+1kx 〉〈�νkx |]. (2)

From the Green function of the Hamiltonian (2), the eigenvalues and density of states can
be worked out in a straightforward way. In the presence of impurities or disorder, the
Hamiltonian (1), with appropriate additional terms, is handled with standard renormalization
procedures [13, 14].

In the following, we consider preliminarily a perfect wire where ν = −50, . . . , 50
runs over Ny = 101 horizontal infinite chains, with site energies E0 = 0, hopping
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Figure 1. (a) Seven lower-energy magnetic bands of the ideal wire described in the text, as
functions of the longitudinal wavevector kx . (b) Total conductance for Fermi energies in the range
(−0.398, −0.388 eV). Each jump in the conductance corresponds to the Fermi level intersecting
a new magnetic band.

energies t = −0.1 eV, bandwidth 8|t|, effective mass m∗ = 0.1 m0, and lattice parameter
a = h̄(2m∗|t|)−1/2 � 20 Å. For a magnetic field of 5 T the eigenvalues of the Hamiltonian (2)
are reported in figure 1(a). It can be noticed that in the central part of the Brillouin zone
the magnetic bands are flat and correspond to bulk Landau levels. The separation between
successive Landau levels is �5.8 meV in agreement with the estimate in the effective-mass
limit. As kx approaches the border of the Brillouin zone, the energies of the bands rise because
the corresponding states approach the physical edge of the wire.

The microscopic currents along each bond of the mesoscopic system are evaluated by
means of the Keldysh–Green function framework. The tunnelling current from site i = (m, ν)

to site j = (m ′, ν ′) in steady-state conditions is given by the expression [9, 10]

Ii j = 2(−e)

h̄

∫
dE

2π
[ti j G

<
j i − t j i G

<
i j ] (3)

where G< is the less-than nonequilibrium Green function of the electronic system, and the
factor 2 is included to consider spin degeneracy.

We have shown elsewhere [11] that the general relation (3) leads to the following
expression for the site-to-site local currents from the (m − 1)th column to the mth column:

Im−1ν,mν = 2(−e)

h̄

∫
dE

2π
[(− fL)A(m)

ν,ν − i( fL − fR)B(m)
ν,ν ]. (4)

In equation (4), fL and fR are the Fermi–Dirac distribution functions (at T = 0 K) of the left
and right reservoirs, kept at the chemical potentials µL and µR . The zero-trace operator

A(m) = G R�R(left) + �A(left)G A − �R(left)G R − G A�A(left) (5a)

defines persistent currents (assuming without loss of generality µL < µR), while

B(m) = G R�(right)G A�A(left) − �R(left)G R�(right)G A (5b)

defines transport currents; all the matrices of equations (5) refer to the Ny sites of the mth
column and have rank equal to Ny . Performing the trace over the chain index ν we recover for
the total current through the device the standard Büttiker–Landauer two-terminal expression

I (total) = 2(−e)

h̄

∫
dE ( fL − fR) Tr[G R�(right)G A�(left)], (6)
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Figure 2. Spatial distribution of currents through a section of the wire of figure 1. The left
chemical potential equals −0.391 eV, just above the second Landau level, and the right chemical
potential equals −0.387 eV, below the third Landau level. (a) Total currents obtained summing the
contributions from persistent currents (b) and transport currents (c). The net current flowing in the
wire is 2 × (2e2/h)×�V where �V = 4 × 10−3 V. The unit on the greyscale is (2e2/h)× 10−3,
and the absolute values of the currents are reported.

where the trace is to be performed on the sites of any chosen column. The retarded self-energies
due to the part of the system at the left and at the right of the mth column are defined as

�
R(left)
ν,ν′ = tmν,m−1ν gR

m−1ν,m−1ν′ tm−1ν′ ,mν′

�
R(right)
ν,ν′ = tmν,m+1ν gR

m+1ν,m+1ν′ tm+1ν′ ,mν′
(7)

(and similarly for advanced quantities); moreover, the linewidth matrices � are given by

�(left) = i�R(left) − i�A(left)

�(right) = i�R(right) − i�A(right).
(8)

The retarded and advanced Green functions of the whole system are denoted by G R and
G A, while gR and g A are the retarded and advanced Green functions obtained decoupling the
column of index m from the rest of the system. The above Green functions have been obtained
by the real-space renormalization procedure which has been proved to be of great feasibility
and stability within the tight-binding method [13–15] in a large number of mesoscopic systems.
In this way, we can evaluate with high accuracy the local and total (differential) conductances
∂ I/∂V , where (−e)V = µR − µL for transport currents and (−e)V = µL for persistent
currents.

As a preliminary test, we have verified that the total conductance of the ordered wire is
perfectly quantized in units of 2e2/h times the number of open magnetic channels. Thus, for
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Figure 3. Spatial distribution of the differential conductance of persistent currents in the system
of figure 1 at the energy E = −0.396 eV. (a) Perfect wire and (b) perfect wire in the presence of
two point impurities of strength �E0 = t in the positions indicated by the arrows.

instance, for −4|t| < EF < −0.388 eV only the lowest two magnetic channels may be active
(figure 1(a)), and the corresponding conductance exhibits two steps (figure 1(b)). Moving to
higher energies, further steps in the conductance are generated.

It is interesting to look at the regions where currents are distributed: from figure 2(a) it
is evident that only edge states support the total current along the wire, which is composed
by a persistent (top and down) current (figure 2(b)) and a transport current (figure 2(c)). The
states in the bulk of the wire are inactive for charge transport. We examine now in more
detail the spatial location of persistent currents, expressed by the zero-trace (‘A’) contribution
of equation (4) where µL = µR . As an example, we report in figure 3 the differential
conductance of persistent currents at the Fermi energy E = −0.396 eV, for the perfect wire
and in the presence of impurities. It can be seen that persistent currents flow on opposite sides
of the wire. It is important to notice that the two spatially separated contributions obtained
summing the conductances over the edge sites are exactly quantized (in units 2e2/h); the total
conductance exactly gives zero both in the case of figure 3(a) and in the case of figure 3(b). The
presence of impurities modifies the shape of the conductance distribution just in the region
where the impurities reside, leaving the profile of the opposite edge unperturbed. We note
that the conductance remains quantized also in the presence of impurities, until the right- and
left-moving carriers remain spatially separated; this can be understood considering that the
trace of the persistent currents is always zero, and that the introduced impurities modify only
one of the two edge contributions.

To further test the robustness of the conductance quantization versus scattering potentials,
we have inserted in the wire an extended disordered region, as specified in figure 4. The
conductance profiles exhibit deep modifications and also the formation of vortexes (clearly
visible on expanded-scale figures not shown here); but, as long as the flow of persistent currents
occurs on spatially separated regions, each contribution to the conductance is exactly quantized
in units of 2e2/h. The persistent and transport contributions to the conductance tend to equalize
in magnitude as the quantum Hall regime is approached.
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Figure 4. Spatial distribution of the differential conductance (absolute values), at the energy
E = −0.396 eV, due to the persistent currents in the wire of figure 1. Random distribution of point
impurities, with energies |W | � 0.2|t|, is inserted in the region indicated by two dotted vertical
lines. The unit of the greyscale is 2e2/h.

In conclusion, we have shown the robustness of the exact conductance quantization both
for transport currents and for spatially separated persistent currents. The occurrence of the
former quantization entails negligible longitudinal potential drop when current flows across
the sample; the occurrence of the latter entails exact conductance quantization when the Hall
potential develops on the opposite sides of the sample. The picture that we have outlined
for the current profiles gives insight into the microscopic mechanisms leading to the exact
conductance quantization in the integer quantum Hall regime.

This work was supported in part by MURST-PRIN 2001, by INFM project PAIS-NANOCURR
2003, and by National Enterprise for Nanoscience and Nanotechnology (NEST-INFM).
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